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Abstract: We establish a new concentration result for regularized risk mini-
mizers which is similar to an oracle inequality. Applying this inequality to reg-
ularized least squares minimizers like least squares support vector machines,
we show that these algorithms learn with (almost) the optimal rate in some
specific situations. In addition, for regression our results suggest that using the
loss function L (y,t) = |y — t|* with a near 1 may often be preferable to the
usual choice of a = 2.

1. Introduction

The theoretical understanding of support vector machines (SVMs) and related
kernel-based methods has been substantially improved in recent years. Based on
Talagrand’s concentration inequality and local Rademacher averages it has recently
been shown that SVMs for classification can learn with rates up to % under some-
what realistic assumptions on the data-generating distribution (see (10) and the
related work (3)). However, the currently available technique, namely the so-called
“shrinking technique” in (10), for establishing such rates requires choosing the
entire regularization sequence a-priori. Unfortunately, the optimal regularization
sequences usually depend on some features of the data-generating distribution typ-
ically unknown in practice, and consequently the results derived by the shrinking
technique have some serious drawbacks.

In this work we replace the shrinking technique by a localization argument similar
to the localization argument used in conjunction with local Rademacher averages.
The key observation for this new localization argument is that regularized risk
minimizers control the size of the norm in the regularization term by their (excess)
risk in a non-trivial manner (see Lemma 4.1 for details). As a consequence of this
observation, we can not only localize with respect to small variances but also with
respect to small maximum normes.

Using the above (double) localization we obtain oracle-type inequalities for a
large class of regularized risk minimizers including support vector machines, and
regularization networks. For the former we can easily reproduce rates established
in (10; 11), while for the latter we show some minmax rates in specific situations
and provide results indicating that using the loss function L, (y,t) = |y — ¢|* with
« near 1 to estimate the regression function may be more robust to both outliers
and the choice of regularization parameter than the usual choice a = 2.
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2 Steinwart, Hush and Scovel
2. An oracle inequality for regularized risk minimizers

Throughout this work we assume that X is compact metric space, Y C [—1,1] is
compact, P is a Borel probability measure on X XY, and H is a RKHS of continuous
functions over X with closed unit ball By. It is well-known that H can then be
continuously embedded into the space of continuous functions C'(X) equipped with
the usual maximum-norm ||.||. In order to avoid constants we always assume that
this embedding has norm 1, i.e. ||.]loo < ||-||7-

Furthermore, L : Y x R — [0,00) always denotes a continuous function which
is convex in the second variable. In the following we are particularly interested in
functions L that satisfy the growth assumptions introduced in (6):

sup L(y; t) <1+ |t|0‘ and Sup’L\Yx[ftyt] (y’ )’1 <cp o1 (1)
yey ey

for some constants o € [1,2], ¢, > 0, and all ¢ € R, where |h|; denotes the Lip-
schitz constant of a function h. The functions L will serve as loss functions and
consequently let us recall the associated L-risk

RL,P(f) = ]E(;c,y)NPL(ya f(.’b)),

where f : X — R is a measurable function. Note that (1) immediately gives
Rr,p(0) < 1. Furthermore, the minimal L-risk is denoted by R} p, i.e.

R1.p=f{Rr p(f)|f: X — R measurable},

and a function attaining this infimum is denoted by f7 p.
The learning schemes we are interested in are based on an optimization problem
of the form

T = argmin (MIfI; +Re.p(/)

where A > 0. Note that if we identify a training set T' = ((1,y1),- -, (ZTn,yn)) €
(X xY)™ with its empirical measure, then fr  denotes the empirical estimators of
the above learning scheme. Obviously, support vector machines (see e.g. (5)) and
regularization networks (see e.g. (8)) are both learning algorithms which fall into
the above category.

One way to describe the approximation error of these learning schemes is the
approximation error function

a(A) == M feall> + Re.p(fra) —Rip, A >0,

which we discussed in some detail in (11). Furthermore in order to deal with the
complexity of the used RKHSs let us recall that for a subset A C E of a Banach
space E the covering numbers are defined by

N(A e, E) = min{n >1:3x1,...,2, € E with A C U(xi—l—sBE)}, e >0,
i=1

where Bp denotes the closed unit ball of E. Given a finite sequence T =
(21,...,2n) € Z™ we are particularly interested in the Banach space Lo(T') which
consists of all equivalence classes of functions f : Z — R and which is equipped

with the norm
1 — 3
1 llary = (= SoIFG17) (2)
i=1
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In other words, Lo(T) is a Lo-space with respect to the empirical measure of
(21,...,2pn). Furthermore, if T is of the form T = ((z1,y1),.-., (Zn,¥n)), and
Tx := (x1,...,%,), then the space Lo(Tx) has the obvious meaning. In addition
to the convention 0" := 1 we utilize the following

0 ifo<axl,
a® = ¢1 ifa=1, (3)
oo ifa>1.

Now we can state the main result of this paper:

Theorem 2.1 Let H be a RKHS of a continuous kernel over X with ||.||co < ||-||#-
Assume that there are constants a > 1 and 0 < p < 2 such that for all § > 0 we
have

sup log N (Bp,8, Lo(Tx)) < ad™P. (4)
Tezn

Let L :' Y xR — [0,00) be a continuous function which is convex in its second
variable and satisfies (1). Furthermore, let P be a distribution on X XY such that
I1.p ezists. Moreover, suppose that for all0 <A <1 and all f € A~z By we have

Ep(Lof—Lofip)?<c(flw+1)’ (ErLof—Lofip)’  (5)

for some constants ¢ > 1, 9 € (0,1], and v € [0,2]. Then there exists a constant
K > 1 such that for all0 < XA <1,e>0, z > 1 satisfying

4 4

Ka 8—2ap—(v+29)(2—p) Ka 2+p)(2—a)

€ 2> max (l()\) + A, 2ap+u(2—p) ’ a(24+p) ’
by 1 n AT 1 on

()™ ()™

we have
Pr* (T eZ": RLP(fT,)\) — R*L,P < a()\) + E) > 1—e "

where Pr* denotes the outer probability.

Theorem 2.1 is proved in Section 4. Now we proceed to illustrate its utility with
some applications.

Example 2.2 (Least square regression with Sobolev spaces) Let us consi-
der the least squares loss function which is defined by L(y,t) = (y—t)?. Furthermore,
let us assume that H contains the regression function x — E(y|z) and satisfies the
complexity exponent condition (4). In addition let (),) be a strictly positive null-
sequence with )\}Lﬂ’ / 25 = o0o. Then in Section 5 we show that our learning rate is of
the form A, . In particular, if H is a Sobolev space of order m on some suitable X C
R?, m > d/2, then we have p = d/m, and consequently, for \, := n”Teta logn our
rate becomes n~ Znta log n. This equals the optimal rate n~Teta up to a logarithmic
factor (see e.g. (7) and the references therein).
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4 Steinwart, Hush and Scovel

Example 2.3 (Comparison of different loss functions used for regression)
Consider again regression with the squared loss function Ly(y,t) = (y —t)? defining
performance but use the loss function L,(y,t) = |y — ¢|* with 1 < a < 2 to
determine the estimate fr . Suppose that H contains the regression function
x — E(y|z), and satisfies the complexity exponent condition (4). In Section 5 we
begin by using the oracle inequality of Theorem 2.1 to bound the excess L,-risk
Ri,.p(fra) — Ry, p- When a = 2 we produce the results of Example 2.2. When

1 <a<?2weset \=n"" with x > 0 and observe that when « < ﬁ we obtain

the rate n~" independently of the value of o and when x > ﬁ we obtain the
rate n~ 7 """ 285)2% | We conclude that the k-optimal learning rate for the L,
2
2+p
distributions P(y|z) are symmetric. These results are then combined with a

calibration inequality

Riy.p(fra) =Rp, p S V(Ri,.p(fra) —Ri, p)
derived from (12) to obtain bounds on Rr, p(fr,x) — R}, p in terms of 1 < a < 2.
We observe that when k < ﬁ we obtain the rate n™" independently of the value of

K

risk is n~ 7 and is achieved when x = . Now suppose that the conditional

« and when s > ﬁ we obtain the rate n~zt T ("~ 2%5) 725 . We conclude that the

k-optimal learning rate for the Lo risk also is n~ 75 and is achieved when x = ﬁ.
It is important to observe that the rate for fixed x gets worse as « increases towards
2 and in particular that we have no rates when 2 — (x — ﬁ)(? +p) < a < 2. When
a =1 (12, Example 3.25) shows how, even though the loss function is not strictly
convex, we can obtain a calibration inequality in terms of assumptions concerning
the concentration about the mean. Consequently with extra assumptions regarding
concentration about the mean we can apply these methods, but do not carry out
such calculations here since they they are out of the scope of this paper. Moreover,
since o = 1 is considered more robust to outliers than o = 2, these results suggest
that setting o near 1 has some substantial advantages to the usual choice a@ = 2.
However, to make such a claim more precise will require considering whether and
in which sense the assumptions of symmetry and boundedness have been violated.
Finally, let us now consider when H is a Sobolev space as in Example 2.2. Then it
is clear that we obtain the same optimal rates for all values of 1 < a < 2, although

for a near 1 we should concern ourselves with the arising constants.

Example 2.4 (Hinge loss classification) Let Y := {—1,1}, L be defined by
L(y,t) := max{0,1 —yt}, y € Y, t € R, and P be a distribution with Tsybakov
noise exponent ¢ € [0,00] in the sense of (10; 11) (see also (2)). When ¢ > 0,

it follows from (10, Lemma 6.6) that the assumption (5) is satisfied with o = 1,
v = 4t2 _ _4q

L5 0= Handc=|(2n— 1)7|4,00 + 2. Moreover it is simple to show the
same is true when ¢ = 0 but with ¢ = 5. Hence the condition on € becomes

K ja\zitts K javss K o\ 52 K j2\2
= maxgo) 0 3 (0 (075 6) T 3G
5_max{a()+,)\n "A\n "A\n "A\n

Some easy estimates then show that this reduces to

(a+1)

4
£ > a(\) + A+ Ka?A7H(2) 500t

where K > 1 is a suitable constant and a and n are assumed to satisfy n > a > 1.
From this we immediately obtain the rates established in (10, Thm. 2.8) and (11,
Thm. 1).

imsart-lnms ver. 2006/03/07 file: ims-12-05.tex date: May 2, 2006
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3. A concentration result for ERM schemes

The proof of our main result Theorem 2.1 is based on a refinement of standard local
Rademacher average techniques. Since this refinement may be of its own interest
we separate its presentation from the proof of 2.1.

Let us begin by introducing some notations. To this end let F be a class of
bounded measurable functions from Z to R. In order to avoid measurability con-
siderations we always assume that F is separable with respect to ||.||s. Given a
probability measure P on Z we define the modulus of continuity of F by

wpn(F,e) = ETNP”( sup \EPf*ETf\)7
feF,
Epf<e

where we emphasize that the supremum is, as a function from Z" to R, measurable
by the separability assumption on F. In addition note that the supremum is taken
over all f € F with Ep f < ¢, whereas usually the supremum is taken over all f € F
with Epf? < e.

We also need some notations related to ERM-type algorithms: we call C' : F x
Z — [0,00) a cost function if C o f := C(f,.) is measurable for all f € F . Given a
probability measure P on Z we denote by fp s € F a minimizer of

f — RC,P(f) = EZNPC(f7 Z)

Moreover, if P is an empirical measure with respect to T' € Z" we write fr r and
Re,r(.) as usual. For simplicity, we assume throughout this section that fp r and
fr.7 do exist. Furthermore, although there may be multiple solutions we use a
single symbol for them whenever no confusion regarding the non-uniqueness of this
symbol can be expected. An algorithm that produces solutions fr r is called an
empirical C-risk minimizer. Moreover, if F is convex, we say that C' is convex if
C(., z) is convex for all z € Z. Finally, C is called line-continuous if for all z € Z
and all f, f € F the function t — C(tf + (1 —t)f, z) is continuous on [0,1]. If F is
a vector space then every convex C is line-continuous. Now we can formulate the
main result of this section:

Theorem 3.1 Let F be a convex set of bounded measurable functions from Z to
R, C: FxZ — [0,00) be a convez, line-continuous cost function, and P be a
probability measure on Z. Assume that

G :={Cof—-Cofpr : feF}

is separable with respect to ||.|so. Furthermore assume that there exist constants
b,B >0, 8€0,1], and w,W >0, v €[0,2], J € [0,2), such that

lglle < b(Epg)’ +B (6)

and
Epg® < (b(Epg)” +B) (w(Bpg)’ +W) (7)
forallge G. Then forn>1, x > 1 and € > 0 satisfying

22(bef + B)¥ (we? + W) N 2z (be? + B)
n n

e > SWP,n(gvg)—"\/
we have

Pr* (T eZ": Rc,p(fTJ:) < Rc7p(fp7_7.‘) + 6) > 1—e".
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6 Steinwart, Hush and Scovel

In order to prove Theorem 3.1 let us first recall Talagrand’s concentration in-
equality (see (14)). The following version of this inequality is derived from Bous-
quet’s result in (4) using a little trick presented in (1, Lem. 2.5):

Theorem 3.2 Let P be a probability measure on Z and ‘H be a set of bounded
measurable functions from Z to R which is separable with respect to ||.||e and
satisfies Eph = 0 for all h € H. Furthermore, let M > 0 and 7 > 0 be constants
with ||h||lee < M and Eph? < 7 for all h € H. Then for all x > 1 and alln > 1 we
have

/2 M .
p" (T € Z" . sup Erh > 3Eq/pn sup Epvh + 7 + x) < e 7.
heH heH n n

This concentration inequality is used to prove the following lemma which is a
generalized version of Lemma 13 in (2) and Lemma 5.4 in (10):

Lemma 3.3 Let P be a probability measure on Z and G be a set of bounded mea-
surable functions from Z to R which is separable with respect to ||.||oo. Let us assume
that G satisfies (6) and (7), and that there is a constant a € [0,1) such that for all
T € 7™ e >0 for which there is a g € G with

Erg < ae and Epg > ¢
there is also an element g* € G with

Erg* < ae and Epg* =c¢.

Then for alln > 1, x > 1, and all € > 0 satisfying

2x(bef + B)¥ (we? + W) N 2 (be” + B)
n n

(1—a)e > 3wpn,(G,e) + \/
we have

Pr*(TGZ": for all g € G with Epg < ae we haveIEpg<5) > 1—e".

Proof: We define H := {Epg—g: g € G,Epg = €}. Obviously, for all h € H we
have Eph = 0 and

[[lloo
Eph?

20e” +2B =1 M,

<
2 ¥ei v 9 .
< Epg? < (be® + B) (we? + W) =i 7.

Moreover, it is also easy to verify that H is separable with respect to ||.||c. As in
the proof of Lemma 5.4 in (10) our assumption on G now yields

Pr* (T € Z" :dg € G with E7g < ae and Epg > 5)

Pr*(T € Z" : 3g € G with Erg < ac and Epg = ¢)

= Pr*(T €Z":3g€G withEpg —Erg > (1 — a)e and Epg = ¢)
PY(TeZ": sup (Epg—Erg) > (1-— a)&)

(rea: =
(

IN

Epg=e

pr TeZ":supEThz(l—a)E).
heH
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A new concentration result for regularized risk minimizers 7

In order to bound the last probability we will apply Theorem 3.2. To this end

observe
2 M
3B/ pn sup Epeh + | —— + =2 < (1—a)e,
heH n n

and consequently applying Theorem 3.2 yields
Pr* (T € Z" :dg € G with Erg < ae and Epg > 5) < e ",

With the help of the above lemma we can now prove Theorem 3.1:

Proof of Theorem 3.1: For a := 0 we will apply Lemma 3.3 to the class G. To
this end it obviously suffices to show the richness condition on G of Lemma 3.3: let
f € F satisty

Er(Cof—Cofpr) <0 and Ep(Cof—Cofpr)>c.

For ¢t € [0,1] we define f; :=tf + (1 —t)fp#. Since F is convex we have f; € F for
all t € [0, 1]. By the line-continuity of C' and Lebesgue’s theorem we find that the
map h:t— Ep(Co fy — Co fpr) is continuous for ¢ € [0, 1]. Since h(0) = 0 and
h(1) > e there is a t € (0, 1] with

Ep(Cofi—Cofpr) = h(t) = ¢
by the intermediate value theorem. Moreover, for this ¢ the convexity of C' gives
Er(Co fi—Cofpr) < ET(tCOf+ (1 —t)cofp,f—COfP7_7_‘> < 0.

Now, let € > 0 satisfy the assumption of the theorem. Then e also satisfies the
assumptions of Lemma 3.3, and hence we find that with probability at least 1 —e™7
every f € F with Ep(Co f—Co fpr) < 0 satisfies Ep(Co f—Co fpr) < €. Since
we always have

Er(Cofrr—Cofpr) <0

we obtain the assertion. [ |

4. Proof of the main result

In order to prove our oracle-type inequality we will apply Theorem 3.1. To this end
we define the regularized cost function C'y by

Cx(x,y, f) = A fllFr + Ly, f(2)), zeX,yeY, feH,
and the induced cost class
G(\) = {CAOf—CAOfP,,\¢f€>\71/2BH}, A>0.

Obviously, the C-risk minimizer produces the functions fpx and fr x. Note that
R p(0) < 1implies fpy € A~1/2By for all distributions P on X xY, and hence the
latter in particular holds for the empirical solutions fr . However, it was already
observed in (10) that, depending on the approximation error function, sharper
bounds for || fr x| are possible with high probability. In order to establish such
sharper bounds we employed a “shrinking technique” in (10) which is rather com-
plicated. The key idea of this paper is to replace the shrinking technique by a
localization argument based on (6). Consequently, let us first show that regularized
risk minimizers always satisfy the supremum bound (6):
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8 Steinwart, Hush and Scovel

Lemma 4.1 Let 0 < A < 1, and suppose that g € G(X\). Then for any f € A\"2 By
such that g = Cyo f — Cy o fp we have

Iflg < (w)l/z.

Proof: Let us write € :== Epg. Then we have

MAE < MAE+RLe(f) —Rip
M feall? +Rep(fpa) —Rip+e
= a(N)+e,

which establishes the second assertion. Consequently, ||L o flloo < 1+ ||f||% yields

M\ §
ICx o Fllae < AIF + 10 flle <ah) 4+ (B 1 ()T 41,

Analogously, we obtain ||Cy o fpalleo < a(A) + (@)% + 1, and therefore we find

a(A)\ 2 e\ %
lglla < max (10 © fllcs 103 0 Fralle) < <+ (B2)F 4 () 42,

where in the last step we used a(\) < 1. Now, f € A™Y/2By implies that ||| <
A~1/2 and an easy calculation shows that 2+ A~%/2 < 3\~ 7-a . Therefore we obtain

e SEpCrof=Alfli+Rep(f) <2+ |[flI% <2+A7% <3077

From this we easily obtain ¢ < 3'72(5)2 < 2(5)%, which gives the assertion. M
We now prove that a variance bound of the form (5) assumed in Theorem 2.1

implies a variance bound of the form (7) assumed in Theorem 3.1:

Lemma 4.2 Let P be a distribution on X XY and suppose that there exist constants
v>0,¢c>1, and ¥ € [0,1] such that the variance bound assumption (5) is satisfied
for some 0 < X\ <1 and all f € \"2By. Then for all g € G(\) we have

Erg < 160((&;”)é b (20 1)v((Epg)ﬂ ; zam)) |

Proof: We use the shorthand notation E for Ep. For g € G(\) pick an f € A™2 By
such that g = Cy o f — C o fpx. Now observe that

Eg> = E(Crof—Cyofpa)’
= E\fI?P=Alfpal>+Lof—Lo fP,,\)2
SE(N|F)12 = Al fpal®)? +2E(Lo f — Lo fpy)”
2N 1t + 222 fpallt + 2E(Lo f — Lo fpy)’
AE(Lo f—Loff p)* +4E(Lo fi p— Lo fp)* + 2X2| f|* + 222 fon ]l

IN A

IN
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A new concentration result for regularized risk minimizers 9

Denote C' := max (Hf||oc + 1, |fpallec + 1). Then the assumption (5) and
a’ +b” < 2(a+0b)? for all a,b > 0, imply that

E(Lof—Lofip) +E(Lofip—Lofpy)
[
< 2C"(E(Lof— Lo fip) +E(Lofpr—Lofip))

Since A?||f]|* <1 and A?||fp.||* < 1 we hence obtain

]Eg2

IN

L
8cC” (B(Lof = Lofi p) +E(Lofpr — Lofip)) +2X 11 +2)% | fonl"

IN

[ [
8¢C” (B(Lof— Loff p)+E(Lofpa—Lofip)) +4(NIfI*+X2] frallY)

IN

9
16eC" (E(Lof — Loff p) + E(Lofpx — Lofi p) + MIfI* + NIl rall*)

9
16cC" (Eg + 2B (Lofpa— Lofip) + 2A||fp,AH2>

16c¢C” ((]Eg)19 + 2a‘9()\)> .

IA

What is left is to bound C' in the right hand side of this inequality. To that end
observe that Lemma 4.1 implies

a()) +Eg)1/2

£l < I1fller < (55

and

I < (a()\/\))l/2 < (a()\) —|—Eg)1/2

ll.fe.x \

so that we can bound

i (11 il +1) = (P10 < (B 00y

oo < [P

The following lemma relates the covering numbers of By with wp,(G(A), €):

Lemma 4.3 Let n € N, and assume that there are constants a > 1 and p € (0,2)
such that for all § > 0, we have

sup logN'(By,8,La(Tx)) < ad?.
TGZ"L

Then there is a constant crp, > 0 depending only on L and p such that for all
distributions P on X XY, and all X € (0,1], € > 0 we have

xXp

wpn(GN).€) < 1 max{ (e ¥ (%) CLETME (Z)} |

where T. > supeg. Epg? and G. :={g € G(A\) : Epg < €}.

Proof: Our first goal is to bound the covering numbers of G.. To this end recall that
for g:=Cyo f—Cxo fpa € G, Lemma 4.1 shows that ||f| g < (%)1/2 =: A.
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10 Steinwart, Hush and Scovel
With the help of the auxiliary sets G. := {Cxo f : f € ABy} and H := {Lo f :
f € ABg} we thus obtain
log N'(Ge, 20, Lao(T)) < logN'(Ge, 26, La(T))
1
log(g + 1) +log N (H, 8, Lo(T))

60
|Lj—an)lt’

IN

IN

log(1 + 1) + 1ogN(ABH,

5 L2(TX)> :

Furthermore, the Lipschitz assumption (1) implies the right hand side is bounded
by

1 0

Consequently, there is a constant ¢z, , > 0 depending only on L and p such that for
all § > 0 we have

ap

sup logj\/(g,s,é7 LQ(T)) <acry (M)Té_p <acry (% + 1)75_17.

)+
TEZn A
By symmetrization, and the proofs of (9, Lem. 2.5) and (10, Prop. 5.7) we thus find

a(\) +¢ P zpraN: fa(N)+e S ra\ T

wpa(G(N),2) < 1y max{((lﬂ) () () () }
|
Proof of Theorem 2.1: Let g := Cy o f — Cy o fp for some f € \"12By.
Lemma 4.1 implies that we have a supremum bound
Epg 5 a()\))%
< — 2.
ol < 3(=2)" +(52)" +

Because of the variance bound assumption (5), Lemma 4.2 implies we have a vari-
ance bound of the form

Epg® < 16(3((E>\Pg)% + (a(;))m + 1>U ((JEPgY9 + 2a“9(>\))
< 480((E§) Ty (a(;))% + 1) : ((Epg)“ + 2a”(A))
< (3(E§9) L (@) Ty 2) ’ (48(;(1&,;9)19 + 96ca19(A)>.

Therefore we have variance and supremum bounds of the form (7) and (6) with the

values b=3\"2, =9, B = (@)% +2, w=48¢c, v =2, and W = 96ca’ (\).

Denote 7. := 34266)\19(% + 1)19+%. Then for g € G(\) with Epg < & we obtain

Epg? < (b’ + B)"(we” + W)

_ 48c<3(i)g + (a(;))% + 2>Zi (519 + Qa”(A)>

A
e
=
©
S
7 N
/N
>
~—
N[R
JF
—
2
>
S~—
N—
Ns)
_l’_
—_
~__
/N
™
<>
_l’_
S
<>
>
~__

A
Nel
(=}
Ne
w
[\&)
)
/~
S
—~
>
Nail?
_|_
™
_|_
[
—
Nl
/N
S
—~
>
S~—"
_|_
™
N——
S

IA
o
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A new concentration result for regularized risk minimizers 11

Consequently we can apply Lemma 4.3 to obtain that

WPn (G(N),e)
(55 0) 2 (21, (4 ) (2) )
cLp/c HlaX{/\W (‘10‘72\‘#54_1) 2opHu+29)(2-p)

We also bound the terms

\/2x(bgﬁ +B)(we? + W) _ \/2m€ _ 3s4vFn <a()\) te, 1>3+2
- n A

IN

2

(2 (052 ) (2)*)

IN

SR

n

and

R0 () ) < B

and then observe that Theorem 3.1 implies that there is a constant K > 1 such
that
pr* (T € (X xY)": Reyp(fra) < Rey.p(frn) +5) > 1—e 7,

whenever

2ap+(v+2v9)(2 p) 2

() () ()™

)\g<a()\)+§+1)§+%(§)%’( a(\)+ € +1)2i}'

. 9 ra(\) +
g > Kmax< A\~ 1 ( \ —|—1

A n A

If we further constrain by & > a(\) + A we find that it is sufficient to satisfy
1 . Q@ 2
ez a0 () (@) (D) (2),
n A n
3

()G () )

Since ¥ € (0,1] and v € [0,2] it follows that 0 < v + 29 < 4 which implies that
2ap+(v+219)(2 p) < 1 and 19

2ap+(v420)(2=p)

+ 7 < 1. Consequently we find that it is sufficient to
satlsfy

4 2+p 4

~ K2a 8—2ap—(v+29)(2—p) K™=2 qg \ G-

€ > maxqa(A) + A | Zmmes ) a(tp) ’
A 1 n

A1 on
K21‘ 4—('u2+219) Kz ﬁ
Ge) G )

Therefore we find that (with a change in the value of the constant K) if

4 4

Ka 8—2ap—(v+29)(2—p) Ka (2+p)(2—a)

€ > max a<)\) + A, Saptu(2—p) ’ a(24+p) ’
by 1 n AT 4

Kz T=(539) Kz =5
Azin "\ \2n
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12 Steinwart, Hush and Scovel
then

Re.p(fra) < Mfrald + Ro.p(fra) = Royp(fra) < Reyp(fea) +e
Cl(A) + Rz,p +e€

holds with probability not less than 1 —e™*. ||

5. Examples

Here we perform the analysis mentioned in Examples 2.2 and 2.3. Let us first apply
the oracle inequality to bound Rr, p(fr,.\) — R}, p with high probability. To that
end we now derive some variance bounds. First observe that (12, Table 3) shows
that the modulus of convexity dy_ |-, p(€) of the function v, : t +— |t|* restricted

to the interval [—B, B] satisfies

ala—1)

2 Ba2¢2 (8)

Oypall-B,B)(€) =

Consequently (2, Lemma 15) implies that modulus of convexity of Ry, p for

functions satisfying ||f|lcc < B is bounded below by %2“‘230‘_252 >
ala—1)

16 B>~2¢2, Moreover, the mean value theorem implies that

a—1
1t =yl = Itz = 9l*| < a(max(t+ 1,02+ 1) |l —taf

so that the loss function f ~— L,(y, f(z)) has a Lipschitz constant less than
o(max{]| i lon [ lloe} + 1) Now let

fi_ p€arg min{Rme(f)‘f : X — R measurable }

]

and define g¢(z,y) := |f(z) —y|* — |[fI. p(¥) —y[®. Then the extension mentioned
after the statement of (2, Lemma 14) to non-margin loss functions implies that we
have the variance bound

2a0—2
Sa (max{]| flloc, I /7. plloc} +1)

T @ (max{|lflle. 17, plleo})”

8a * a
gy (a1l £ plloc} + 1) "Eoy.
Observe that the right hand side of these bounds goes to co as a — 1 since ¥,
is not strictly convex. Also note that such a bound, but with different constants,
follows directly from (12, Equation 28). Since [|f7_ plloc < 1 we then obtain

IN

8« [eY

Therefore we can apply Theorem 2.1 with v = o and ¢ = 1 to obtain that there
exists a constant K, > 1 such that for all 0 < A <1, e > 0, z > 1 satisfying

e > rnax{aa()\) + A, (ﬁ) (2+p)4(270), (Kax) 22&} ) 9)

/\0(24+p)n Aon
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A new concentration result for regularized risk minimizers 13

we have
Pro(T € 2" Rupp(fra) = Ri,p < aa(N) +2) = 1=¢™  (10)

where a,(+) is the approximation error function defined with respect to the risk
Re,.p-

In (11) it was shown that the assumption f; p € H implies that as(\) <
Al f7. pllF for all A > 0. We assume without loss of generality that as(\) < A.
Let us first consider when o = 2. If we now assume (\,,) is a strictly positive null-
sequence with ALTP 1 — oo then it is easy from the convention (3) applied to the
inequality (9) that our learning rate is of the form A,, thus finishing the proof for
Example 2.2. Now consider the case 1 < a < 2. Then (9) becomes

o Koo\ errie—a o (Koz\52a
e Z max{aa()\)+)\’ _H(J)(+)( )’)\_m( ZC)z } (11)

n n

Moreover when n > K,a elementary calculations show that it is sufficient to satisfy

4
Kw)m

e> aa(A)+A+A—ﬁxﬁ( -

(12)

If we now assume A = n~". Then elementary calculations show that we obtain the
rate n~" independently of the value o« when s < ﬁ and when k > Q—_ZH) we obtain

the rate n~ 7 T 70w (" 75|
Let us now assume that the conditional distributions P(y|z) are symmetric. We
now proceed to derive a calibration inequality

Ri,.p(fra) =RL, p S V(Ri,.p(fra) —Ri, p)

so that we can apply the bounds on Ry, p(fr,x) =R}, p) defined by (10) and (12)
to obtain bounds on Rp, p(fr,\) — R, p in terms of a. Since we will need results
and notations from (12) we first give a brief outline of its content. Consider a loss
function L and a measure ) on Y. Then the associated inner risk is defined as

Crolt) = /Y L(y.t)dQ(), teR,

and can be used to compute the risk

Rup(f) = /X Cr iy (£(2))dPx ().

The minimal inner risk is defined as Cj  := infier Cr.q(t). Consider now another

loss function L. Then the calibration function 0 ax 1. 1(€, Q) is defined as the largest
function comparing the excess inner risks, i.e.

5max,L,ﬁ(CL7Q(t) - CZ,Q’ Q) < CL,Q(t) - CZ’Q

We shall also find it convenient to consider the template loss Lyean introduced in
(12) and defined by
Lmean(Q7t) = ‘EQ - t| ) teR

and its inner risk

Croalt) = /Y EQ — tldQ(y), teR.
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14 Steinwart, Hush and Scovel

We can now proceed to derive the appropriate calibration inequality function ¥
for comparing Ly and L. Since P(y|z) is symmetric for all z, (12, Theorem 3.23)
implies that we have mean calibration with calibration function bounded below by

Omax, Luean: Lo (6,Q) > 5¢a\[—(2+€)72+5] (2¢)

where dy,|[—(2+¢),24¢ 18 the modulus of convexity of the function 1, restricted to
the interval [—(2 + ¢€),2 + ¢]. By (8) we then obtain

(a-1)

« _
Omax, Limean,ta (6,Q) > B) (2+¢)" %2,

Since (12, Equation (38)) states dmax, Ly, L, (€, @) = Omax, Luean. Lo (VE, @) We find

bt ra(6,@) 2 Do e

We now seek to apply (12, Theorem 2.13). In that notation we bound

By =sup|f(x) = E(yla)|” < [l +1]"

Denote () := 221 (2 + ,/£)*2¢. Then since

2
%((2 + \/5)04—25) =(2+ ﬁ)a—3(2 + %\/g) >0
and 2 3
@((2 + \/Z:)afzg) =(a—2)2 (5 i %ﬁ) (24 V) <0

we conclude that ¢ is strictly monotonically increasing and concave. It follows that

. . S(Ifle +11")  ala—1) )
¢ (e) > o 2(e) = e= (B + [ flloc)* 2
By [ flloo+1] |||f||oo + 1|2 2

where ** denotes the Fenchel-Legendre bi-conjugate operation (see e.g. (13)). It
then follows from (12, Theorem 2.13) that

R, p(f) = Ri,p < B+ 1flle)* *(Reo.p(f) = RL, p)  (13)

2
ala—1)
for all bounded measurable functions f. Note that the constant in this inequality
goes to oo as a goes to 1. The deeper reason for this behaviour is that 1, is strictly
convex when o > 1 but not strictly convex when o = 1 as discussed in (12).

We conclude from inequalities (13) and (10) that whenever (12) is satisfied that
with probability greater than 1 — e™* we have

Rer, p(fra) —Ri, p < B+ [Ifralloc)* e

4
ala—1)

However we also know from the last line of the proof of Theorem 2.1 that whenever
(12) is satisfied that with probability greater than 1 —e™*

Ifralee < sl < 220055 < va 2.
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A new concentration result for regularized risk minimizers 15

Now since 1 < § when (12) is satisfied it follows that

B+ Irall < (3+v3 [5) < (3+v2) (5)

so that with probability greater than 1 — 2e~* we have
4
ala—1)

If we now apply the inequality a,(A) < A and let

Rr, p(fra) —Ri, p < 3+ V2)AE 128

)

4
Kaa> [CED e

£ = 2+ xﬁmﬁ(
n

then we see that with probability greater than 1 — 2e™" we have
Reis.p(fra) = RL, p

< L(3+\T)Arl Wza(@)m >
~ ala-1)

2 4-o
ca()\Jr)\ 22&:v2* (K a>2+p2a>
n

for some constant ¢, which depends only on a.
Now let us consider the case when A\ = n™". Then disregarding the constants
the righthand side becomes

-3
2

IN

so that we obtain performance bounds of the form n~" with

. ( 2 n ( 2 ) 2 )
= min (K — K .
P "24p  ‘2+4p 2—«
Simple calculations show that when x < 53— then p = K independently of the value

9f o and when Kk > ﬁ then p = Qip + (%p - 5)2 . In the latter case it is
important to observe that the rates get worse as « increases towards 2. Indeed one

can show that p < 0 in the interval
2—( 2 J2+p)<a<?2
— (kK — —— « .
24p pI=as=

Moreover one can see that smaller @ minimizes the sensitivity to the degree to

which k is greater than m
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